MAXWELL'S EQUATIONS

Name or Description	SI	Gaussian
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
Ampere's law	$ abla imes \mathbf{H} = rac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$	$ abla imes \mathbf{H} = rac{1}{c} rac{\partial \mathbf{D}}{\partial t} + rac{4\pi}{c} \mathbf{J}$
Poisson equation	$\nabla \cdot \mathbf{D} = \rho$	$\nabla \cdot \mathbf{D} = 4\pi \rho$
[Absence of magnetic monopoles]	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
Lorentz force on charge q	$q\left(\mathbf{E}+\mathbf{v} imes\mathbf{B} ight)$	$q\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$
Constitutive relations	$egin{aligned} \mathbf{D} &= \epsilon \mathbf{E} \ \mathbf{B} &= \mu \mathbf{H} \end{aligned}$	$egin{aligned} \mathbf{D} &= \epsilon \mathbf{E} \ \mathbf{B} &= \mu \mathbf{H} \end{aligned}$

In a plasma, $\mu \approx \mu_0 = 4\pi \times 10^{-7} \,\mathrm{H\,m^{-1}}$ (Gaussian units: $\mu \approx 1$). The permittivity satisfies $\epsilon \approx \epsilon_0 = 8.8542 \times 10^{-12} \,\mathrm{F\,m^{-1}}$ (Gaussian: $\epsilon \approx 1$) provided that all charge is regarded as free. Using the drift approximation $\mathbf{v}_{\perp} = \mathbf{E} \times \mathbf{B}/B^2$ to calculate polarization charge density gives rise to a dielectric constant $K \equiv \epsilon/\epsilon_0 = 1 + 36\pi \times 10^9 \rho/B^2$ (SI) $= 1 + 4\pi\rho c^2/B^2$ (Gaussian), where ρ is the mass density.

The electromagnetic energy in volume V is given by

$$W = \frac{1}{2} \int_{V} dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D})$$
 (SI)
$$= \frac{1}{8\pi} \int_{V} dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D})$$
 (Gaussian).

Poynting's theorem is

$$\frac{\partial W}{\partial t} + \int_{S} \mathbf{N} \cdot d\mathbf{S} = -\int_{V} dV \mathbf{J} \cdot \mathbf{E},$$

where S is the closed surface bounding V and the Poynting vector (energy flux across S) is given by $\mathbf{N} = \mathbf{E} \times \mathbf{H}$ (SI) or $\mathbf{N} = c\mathbf{E} \times \mathbf{H}/4\pi$ (Gaussian).